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If a stochastic system during some periods of its evolution can be divided into noninteracting parts, the
kinetics of each part can be simulated independently. We show that this can be used in the development of
efficient Monte Carlo algorithms. As an illustrative example, the simulation of irreversible growth of extended
one-dimensional islands is considered. The approach allowed us to simulate the systems characterized by
parameters superior to those used in previous simulations.
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A unique feature of the kinetic Monte Carlo �kMC� tech-
nique that to a large extent underlies its wide acceptance in
physics is its ability to provide essentially exact data describ-
ing complex far-from-equilibrium phenomena �1�. The tech-
nique, however, is rather demanding on computational re-
sources that in many cases makes the simulations either
impractical or altogether impossible �2,3�. As was pointed
out in Ref. �2�, the major cause of the low efficiency of kMC
is the large disparity between the time scales of the partici-
pating processes. In fact, it is the fastest process that slows
down the simulation the most. As a remedy, it was suggested
that the fast processes were described in some averaged,
mean-field manner. These and similar observations are at the
heart of various approximate multiscale schemes �see, e.g.,
Refs. �2,4–7��.

The approximate implementations, however, deprive
kMC of its major asset—the exactness. As a consequence, it
cannot serve as a reliable tool for resolving controversial
issues, such as, e.g., those arising in connection with the
scaling laws governing the irreversible epitaxial growth �see
Refs. �3,5,8� and references therein�.

Recently, an exact kMC scheme called by the authors the
first-passage algorithm �FPA� was proposed that avoids
simulating all the hops of freely diffusing atoms and using
instead analytic solutions of an appropriate diffusion equa-
tion �9�. It is premature to draw definite conclusions about
the efficiency of the algorithm tested only on one system, at
least before additional technical issues improving its effi-
ciency are published by the authors. However, the authors
themselves note that there are problems in the treatment of
closely spaced atoms. This makes it difficult to use the FPA
in simulating the diffusion-limited kinetics in such cases
when, along with large empty spaces where the analytic de-
scription is efficient, there exist reaction zones where the
particle concentrations are high, such as, e.g., in the vicinity
of islands during the surface growth. Furthermore, because
the majority of kMC simulations are performed with the use
of the by now classic event-based algorithm �EBA� of Ref.
�10�, the FPA would be difficult to use in the upgrade of the
existing code. This is because the FPA is completely different
from the EBA, and its application would require a new code
to be created from scratch. In some cases, this may be more
time-consuming than the use of the available EBA code.

The aim of the present paper is to propose an exact accel-
erated kMC algorithm that extends the EBA in such a way

that in the case of the diffusion-limited systems, only the
atoms that are sufficiently well separated from the reaction
zones are treated with the use of exact diffusion equations,
while in the high-density regions the conventional EBA is
used.

The algorithm we are going to present can be applied to
any separable model. For concreteness, we present it using as
an example a simple �but nontrivial—see �11� and references
therein� example of the irreversible growth in one dimension
�1D� �11–13�. Its generalizations to other systems are com-
pletely straightforward.

Our approach is based on the observation that the fastest
process in the surface growth is the hopping diffusion of the
isolated atoms �or monomers� �2�. Random walk on a lattice
is one of the best studied stochastic phenomena with a lot of
exact information available. In cases in which the monomers
are well separated from each other and from the growth re-
gions, the analytical description of their diffusion can be
computationally much less demanding than straightforward
kMC simulation.

In the model of irreversible growth, the atoms are depos-
ited on the surface at rate F where they freely diffuse until
meeting either another atom or an island edge, which results
either in the nucleation of a new island or in the growth of an
existing one, respectively. To illustrate the strength of our
approach, we will study the limit of low coverages �→0
because in Ref. �3� this limit was considered to be difficult to
simulate in the case of extended islands. Because the scaling
limit corresponds to

R � D/F → � �1�

�where D is the diffusion constant�, i.e., to very low deposi-
tion rates, and, furthermore, because the covered regions are
also small due to low �, we found it reasonable to neglect
nucleation on the tops of islands by assuming them to be
monolayer high.

In its simplest implementation, our algorithm is based on
a subdivision of the monomers into two groups �A and B�,
which at a given moment are considered to be active �A� and
passive �B� with respect to the growth processes. The passive
monomers are those that are too far away from the places of
attachment to existing islands or of nucleation of new ones.
This can be quantified with the use of a separation length L.
Thus, an atom is considered to be passive if it is separated
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from a nearest island by more than L sites or if its separation
from a nearest monomer exceeds 2L. The monomers that do
not satisfy these restrictions are considered to be actively
participating in the growth and thus belong to the group A. It
is the passive atoms B that we are going to treat within an
analytical approach instead of simulating them via kMC.
Thus, in contrast to the FPA where all atoms should be
boxed, in our algorithm we may box only those that will
spend some appreciable time inside the boxes and will not
need to be quickly reboxed as in the FPA with closely spaced
atoms.

Formally this is done as follows. Let us place all B atoms
in the middle of 1D “boxes” of length Lbox=2L+1. Assum-
ing the central site has the coordinate i=0, the initial prob-
ability distribution is of the Kronecker � form

p�i,t = 0� = �i0, �2�

where the time variable t counts the time spent by the atom
inside the box. With the atomic hopping rate set to unity, the
evolution of the probability distribution of an atom inside the
box satisfies the equations

�p�i,t�
�t

=
1

2
p�i + 1,t� +

1

2
p�i − 1,t� − p�i,t� , �3a�

�p��L,t�
�t

=
1

2
p„��L − 1�,t… −

1

2
p��L,t� , �3b�

where �i � �L. The first equation expresses the conservation
of probability on the interior sites i� �L. The change of
probability on site i given by the time derivative on the left-
hand side comes from the probability of atoms hopping from
neighbor sites i�1 �two positive terms on the right-hand
side� minus the probability for the atom to escape the site.
The “in” terms have weights 1

2 because the atoms have two
equivalent directions to hop. The boundary equations �3b�
differ only in that there is neither incoming flux from the
outside of the box nor outgoing flux in this direction.

The solution at an arbitrary time can be written as

p�i,t� = Lbox
−1 �1 + 2�

m=1

L

e−�mt cos��mi�	 , �4�

where

� = 2�/Lbox and �m = 2 sin2��m/2� . �5�

The distribution Eq. �4� satisfies Eqs. �3� as can be checked
by direct substitution. The initial condition Eq. �2� as well as
the probability conservation �ip�i , t�=1 can be verified with
the use of Eq. 1.342.2 from Ref. �14�. In our algorithm we
will need to repeatedly calculate p�i , t�, so its efficient calcu-
lation is important. Equation �4� is formally a discrete Fou-
rier transform, so it is natural to use a fast Fourier transform
�FFT� algorithm. Because our choice for the position of the
atom in the center of the box makes the box length odd
�Lbox=2L+1�, we used the radix-3 algorithm of Ref. �15�, so
the sizes of all our boxes below are powers of 3.

The gain in the speed of the simulation is achieved be-
cause as long as atoms B stay within the boxes, we do not

waste computational resources to simulate them by knowing
that they evolve according to Eq. �4�.

Obviously, sooner or later the atomic configuration will
change so that the A-B division will cease to be valid. This
happens, in particular, when an atom leaves the box. Because
the hopping in the model is allowed only at the nearest-
neighbor �NN� distance, only the atoms at sites �L may
leave the box. With the hopping probability being 1

2 at each
side, the probability of an atom to leave the box is

Pend�t� � p��L,t� . �6�

By repeated differentiation of Eq. �6� with the use of Eqs.
�3�, it can be shown that as t→0, Pend�t�=O�tL�, which
means that for sufficiently large boxes the probability is very
close to zero at small t. From the graph of this function
plotted in Fig. 1, it is seen that the probability of leaving the
box is practically zero for t	0.02Lbox

2 .
Let us consider a 1D “surface” consisting of K cites with

the cyclic boundary conditions being imposed �site i=K be-
ing identical to site i=0�. Let the configuration at time t
consist of nA active atoms, nB boxed atoms, and n islands.
This configuration will change with the time-dependent rate
�cf. Ref. �10�, where the only difference is that the rate is
constant�


�t� = FK + nA + nBPend�t� , �7�

where the first term describes the rate of deposition of new
atoms, the second corresponds to a hop of an active atom A
to a NN site �we remind the reader that the hopping rate is
set to unity�, and the last term describes the rate of B atoms
getting out of the boxes. Because the rate is time-dependent,
we are faced with the necessity to simulate the nonhomoge-
neous Poisson process �the EBA is the homogeneous Poisson
process�. We will do this by using the thinning method �16�
in its simplest realization with a constant auxiliary rate 
*

satisfying


* � 
�t� . �8�

We chose it as


* = FK + nA + nB/Lbox. �9�

From Fig. 1, it is seen that Eq. �8� is satisfied.
In its most straightforward realization, our algorithm con-

sists in the following steps.
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FIG. 1. �Color online� Time-dependent probability rate Pend�t�
for the boxed atom to escape from the box.
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�1� Generate a random uniform variate u� �0,1� and ad-
vance the time in the boxes as

t → t − ln�u�/
*. �10�

�2� Generate another u, calculate the rate 
̄=u
*, and
check whether the inequality


̄ � 
�t� �11�

holds. If not, loop back to step 1; if yes, go to the next step.

�3a� If 
̄�FK, the deposition event takes place. Choose
randomly the deposition site and go to step 4.

�3b� FK�
̄�FK+nA corresponds to the atomic jump.
Move a randomly chosen atom to one of the NN sites, and if
this site is a neighbor to a box or to another atom, go to step
4; otherwise loop back to step 1, diminishing nA by one if the
jump site was a NN site of an island, so that the atom gets
attached to it.

�3c� Finally, if FK+nA�
̄�
�t�, an atom leaves the box;
choose at random the box and the exit side; go to the next
step.

�4� Calculate exp�−�mt� using Eq. �5� and find the prob-
ability distribution via the FFT in Eq. �4�. For each boxed
atom, generate a discrete random variable −L� i�L with the
distribution p�i , t� and place the atom previously in the box
centered at iB at site �iB+ i mod K�. Then depending on step
3, nucleate a new island or add the deposited atom at the
random site chosen. If the site turns out to be on top of an
island, move it to the nearest edge; choose it at random if
exactly in the middle. In this way, we avoid the nucleation on
tops of islands. This prescription is not unique and can be
replaced if necessary.

�5� Separate the atoms into groups A and B; reset the time
inside boxes to zero �t=0�; loop back to step 1.

The majority of the above steps were chosen mainly for
their simplicity with no serious optimization attempted. In
the simulations below, the performance was optimized only
through the choice of the box size Lbox, which was the same
throughout the simulation, though it seems obvious that
choosing different Lbox at different stages of growth should
improve the performance because of the density, which

changes with time. Leaving this and similar improvements
for future studies, in the present paper we checked the central
point of the algorithm, which consists in its step 2. Because
with an appropriate choice of Lbox most of the atoms are
boxed �up to 100% at the early stage� and because the depo-
sition rate F is very small �see Eq. �1��, at small t the simu-
lation makes a lot of cycles between the first and the second
steps due to the small acceptance ratio �see Fig. 1�. Thus, by
simply generating the random variates we simulate diffusion
of all boxed atoms.

We simulated the model with the parameters shown in
Figs. 2–4 with K �the system size� in the range 106–107 on a
180 MHz MIPS processor. Our primary goal was to validate
our kMC algorithm and to check the possibility to extend the
parameter ranges achieved in previous studies. To the best of
our knowledge, we succeeded in carrying over the simula-
tions with the values of major parameters, such as R and K
exceeding those in previous studies while our smallest value
of coverage is the smallest among those used previously in
kMC simulations. This was achieved with the maximum ex-
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FIG. 2. Illustration of independence of the island size distribu-
tion on the length of the box Lbox used in the simulation algorithm;
90–100 % of atoms were boxed for Lbox=9 and 90–100 % were
not boxed for Lbox=2187 �for further explanations, see the text�.
The same statistics corresponding to 106 deposited atoms was gath-
ered for each box size.
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FIG. 3. The scaled island size distribution function defined in
Eq. �12� as obtained in the kMC simulations explained in the text.
The optimum box sizes were 81, 243, and 729 for �=0.1, 0.01, and
0.001, respectively. Statistics of 5105 atoms was gathered in each
of the three cases studied. Because of the scaling law S��3/4R1/4

�13�, the number of islands simulated in all three cases was approxi-
mately the same.
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FIG. 4. Island �N� and monomer �N1� densities at different cov-
erages. The dashed line describes the fit to the asymptotics N
��1−z with z= 3

4 �12,13�; the dashed-dotted line is the fit to the
asymptotics N1��−r with r
0.64.
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ecution time �for one run� slightly larger than 2.5 h. We ex-
pect that with better optimization with modern processors,
even better results can be achieved.

Though no systematic study of scaling was attempted, the
data on the scaling function f defined as �12�

Ns =
�

S2 f� s

S
� �12�

�where Ns is the density of islands of size s and S=�s=2
� sNs is

the mean island size� presented in Fig. 3 show perfect scaling
for all three cases studied which differ six orders of magni-
tude in the deposition rate and two orders of magnitude in
coverage. No dependence of f�0� on � found in Ref. �8� is
seen in our Fig. 3, though the range of variation of � is more
than two orders of magnitude larger. The index z= 3

4 used in
Fig. 4 to fit the data on N�n /K provides a better fit than the
value z=1 suggested in Ref. �8� for the extended islands. In
our opinion, the point island value is a reasonable choice at
very low coverages because the island sizes became negli-
gible in comparison with the interisland separations �the gap
sizes�. The situation needs further investigation because an-

other index r was found to be equal to 0.64 while the
mean-field theory predicts it to be 1

2 �12,13�. Presumably, the
value of R=5109 used by us was not sufficiently large for
the scaling to set in. We note, however, that it is 500 times
larger than that used in Ref. �8�.

In conclusion, we would like to stress that the technique
presented above can be applied to any separable systems, not
only to the case considered in the present paper, nor is the
availability of an analytical solution critical. The solution for
the subsystems can be numerical or even obtained via kMC
simulations. Further modifications may include introduction
of several scales, e.g., with the use of the boxes of different
sizes as in Ref. �9�; the subsystems chosen can be different at
different stages of the simulation. In brief, we believe that
the technique proposed is sufficiently flexible to allow for the
development of efficient kMC algorithms for a broad class of
separable systems.
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